Hnojivo

Asi najčastejšia otázka a najviac diskutovaná téma sa týka práve najlepšieho hnojiva pre Plumérie a ako správne hnojiť. Nuž a zatiaľ sa nikto nezhodol na tom, ktoré hnojivo (či aký pomer NPK) je najlepšie. Každý pestovateľ a predajca má svoje overené metódy a hnojivo, ktoré odprúčajú.

Medzi odporúčané patria napr.:

  • s vyrovnaným pomerom zložiek 11-11-11 + seaweed extract
  • s pomerom 3-1-2 ako napriklad 9-3-6 či 12-4-3
  • s vysokým pomerom fosforu (P), napr. 10:52:10

Pridávam aj základné informácie o jednotlivých hlavných zložkách hnojiva:

  • N / dusík - podporuje rast stonky a listov. Ak má hnojivo veľký pomer dusíka, rastlina bude vysoká a stonka úzka.
  • P / fosfor - podporuje kvitnutie a rast koreňov
  • K / draslík - podporuje silu a odolnosť rastliny a stonky (aj koreňov)

Okrem hlavných zložiek sú v hnojive doležité aj ďalšie živiny ako napr. železo, zinok, vápnik,...

Treba si hlavne uvedomiť, čo chceme a potrebujeme pre rastlinu. Mladé rastlinky zo semienka nepotrebujú hneď kvitnúť, dôležité je aby boli silné a zdravé, preto stačí hnojivo s nižším pomerom fosforu. Na druhú stranu, od starších rastlín a odrezkov sa očakávajú kvety a v tomto rípade mnohí siahnu po hnojivách s vysokým pomerom forsforu ako napr. 10:52:10 alebo 20:20:20.

Niektorí pestovatelia dokonca používajú rôzne hnojivá počas roka. Na jar pri prebúdzaní používajú hnojivo s vyšším pomerom dusíka, neskôr na jar a cez leto s vyšším pomerom forsforu a na jeseň zase s vyšším pomerom draslíka a fosforu. Niektorí zase majú radšej nižší pomer, aby Pluméria nebola príliš vysoká a "prehnojená".

Avšak dočítala som sa, že nie je nevyhnutné aby pomer fosforu bol až tak vysoký. Ak je v hnojive málo dusíka, rastlina nedáva energiu do rastu, ale do tvorby kvetov, plodov, koreňov. Taktiež mnoho fosforu spôsobuje, že listy pôsobia nezdravo....strácajú lesk, žltnú. Toto môžem potvrdiť aj z vlastnej skúsenosti. Na staršie Plumérie používam 10:52:10. Listy síce nežltnú, ale ani sa nelesknú a sú svetlo zelené.

Analýza NPK a hlavne P zložky z GardenWeb

Celkom sa mi páči analýza hnojív užívateľa "tapla" z GardenWeb fóra (https://forums.gardenweb.com/forums/load/plumeria/msg1015242522104.html)

 

As long as we're on the topic of fertilizers, we might as well take a little closer look at the high-P "bloom-booster" formulations so many growers believe promote additional blooming.

This is copy/pasted from one of my older threads:

Lets first look at the role of fertilizers in general. There are 6 factors that affect plant growth and yield; they are: air, water, light, temperature, soil or media, and nutrients. Liebig's Law of Limiting Factors states the most deficient factor limits plant growth and increasing the supply of non-limiting factors will not increase plant growth. Only by increasing most deficient factor will the plant growth increase. There is also an optimum combination of the factors and increasing them, individually or in various combinations, can lead to toxicity for the plant.

From the above, we can say that when any nutritional element is deficient in the soil, plant growth slows. We have a term for this occurrence: environmental dormancy. When the deficient element is restored to adequacy levels the environmental constraint caused by the deficient element is eliminated and plant growth can resumes at a normal rate, as long as there are not additional limiting factors. Continuing to increase the element beyond the adequacy range offers no benefits and can deleteriously affect the plant - often in several ways, depending on the element.

Somewhere along the way, we curiously began to look at fertilizers as miraculous assemblages of growth drugs, and started interpreting the restorative (of normal growth) effect of fertilizer as stimulation beyond what a normal growth rate would be if all nutrients were adequately present in soils. It's no small wonder that we come away with the idea that there are 'miracle concoctions' out there and often end up placing more hope than is reasonable in them. In couplet with the hope for the 'miracle tonic' is 'more must be better'. I'll use the latter idea as the lead-in for my thoughts on high-phosphorous fertilizer blends.

Among container growers you often find common belief that high-phosphorus (P) content fertilizers are a requirement for promotion of root growth and/or flowering. Fertilizer blends like 15-30-15, and even 10-52-10 are sold under names that imply that you actually NEED these formulas for plants to bloom well and to produce strong roots. Lets examine that idea in a little more depth.

While anecdotal evidence abounds, there is very little scientific evidence to show any need for such products. I've mentioned in other posts that high-P fertilizers are a historical carry-over from when it was most common for plants to be started in outdoor soil beds, the soil in which was usually still quite cold at sowing time. Both the solubility of P and plants' ability to take it up are reduced in cold soils, so it was reasoned that fertilizing with high levels of P insured that at least some would be available during periods of growth in chilled soils.

We know that tissue analysis of leaves, roots, flowers - any of the live tissues of healthy plants will reveal that P is present in tissues at an average of 1/6 that of nitrogen (N) and about 1/4 that of potassium (K). Many plants even contain as much calcium as P. If we know that we cannot expect P to be found in higher concentrations in the roots and blooms than we find in foliage, how can we justify the belief that massive doses of P are important to their formation?

It is well known among experienced growers that withholding N when all other nutrients are available at adequate levels induces bloom production, even on smaller and younger plants. Though plants USE nutrients at approximately a 3:.5:2 ratio (note that N is 6 times the level of P, and K is 4 times the level of P), most greenhouse operations purposely fertilize with something very near a 2:1:2 ratio to limit vegetative growth so they can sell a compact plant sporting pretty blooms to tempt you.

Simply limiting N limits vegetative growth, but it does nothing to limit photosynthesis. The plant keeps making food, but it cannot use it to grow leaves and extend stems because of the lack of N. To where should we imagine the energy goes? It goes into producing blooms and fruit.

What harm might there be in a little extra P in our soils? First consider that the popular 10-52-10 has almost 32 times more P than a huge percentage of plants could ever use. Even 1:1:1 fertilizer formulas like the popular 20-20-20 are already high P formulas because they have 6.25 times more P (in relation to N) than plants require to grow robustly and normally.

Evidence of phosphate over-fertilizing usually always includes some degree of leaf chlorosis. P competes with iron (Fe) and manganese (Mn) ions for attachment sites and causes antagonistic deficiencies of these micronutrients. Unfortunately, the deficiency of these elements causes interveinal chlorosis (yellowing), and the first thing we normally consider as a fix for yellow leaves is more fertilizer, so we give the plants a good dose of our favorite bloom-bomb which causes, no surprise - worsening of the condition.

I'll close with an anecdote of how I used to fertilize plants with showy blooms before I had a better understanding of the overall picture. I would fertilize with a "bloom-boosting" fertilizer as long as foliage was bright green. As foliage inevitably yellowed, I would then switch to a high N formula until the color returned and start the cycle over again. I THOUGHT that the P was helping produce blooms and the yellowing was caused by a lack of N, which I quickly jumped to correct at the first evidence of yellow. I now understand that the high levels of P were what was causing the yellowing and it wasn't my returning to a high N formula that greened the plant up again, it was the reduction in the level of P in the soil when I stopped using the high-P formulation.

BTW - for containerized plants, while it's ok to continue to fertilize with complete fertilizers through fall ('complete' just means the fertilizer contains N, P, & K), you should refrain from fertilizing when soil temperatures are below 55*, regardless of the time of year. This is especially true if you're using an organic source of N, (like any of the various 'meals') or a fertilizer that gets its N from sources other than nitrates. This is to prevent ammonium toxicity, the symptoms of which are commonly seen but rarely properly diagnosed.